1. Given the Banach space $(C[0,1],\|\cdot\|)$, where $\|\cdot\|$ is defined as

$$
\|x\|=\max _{t \in[0,1]}|x(t)|,
$$

prove that this Banach space cannot be an inner product space (with the above defined norm induced by the innder product as $\|x\|=$ $\langle x, x\rangle)$.

Hint: Just need to show that the parallelogram equality/identity does not hold for the above defined norm of $C[0,1]$. In other words, just need to find $x, y \in C[0,1]$, such that

$$
\|x+y\|^{2}+\|x-y\|^{2} \neq 2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

2. If an inner product space X is real (in other words, X is over \mathbb{R}), prove that

$$
\|x\|=\|y\| \text { if and only if }\langle x+y, x-y\rangle=0 .
$$

What does that mean if $X=\mathbb{R}^{n}$ with $n \geq 2$? In other words, try giving a geometric explanation of the fact you just proved for the case $X=\mathbb{R}^{n}$ with $n \geq 2$.

